Last Updated: February 25, 2016
·
2.903K
· __imom0

Python memoize decorator

A comparison between node.js and python, measures the time of running recursive fibonacci functions, the former is much faster than the latter, which may be the cause of v8 engine.

def memoize(f):
    cache = {}
    def decorated_function(*args):
        if args in cache:
            return cache[args]
        else:
            cache[args] = f(*args)
            return cache[args]
    return decorated_function

But you can use memoize in python to speed up, its function form sets up a closure cached the values have been computed.

On the other hand, it also can be implemented by class:

import collections
import functools

class memoized(object):
   '''Decorator. Caches a function's return value each time it is called.
   If called later with the same arguments, the cached value is returned
   (not reevaluated).
   '''
   def __init__(self, func):
      self.func = func
      self.cache = {}
   def __call__(self, *args):
      if not isinstance(args, collections.Hashable):
         # uncacheable. a list, for instance.
         # better to not cache than blow up.
         return self.func(*args)
      if args in self.cache:
         return self.cache[args]
      else:
         value = self.func(*args)
         self.cache[args] = value
         return value
   def __repr__(self):
      '''Return the function's docstring.'''
      return self.func.__doc__
   def __get__(self, obj, objtype):
      '''Support instance methods.'''
      return functools.partial(self.__call__, obj)

@memoized
def fibonacci(n):
   "Return the nth fibonacci number."
   if n in (0, 1):
      return n
   return fibonacci(n-1) + fibonacci(n-2)

print fibonacci(12)

The class has an instance variable of dict to store the values, the cache key must be hashable for using as a dict key, memoized_function([1, 2], [3, 4]) will not be cached.

class Fibonacci(object):

    @memoized
    def get_result(self, n):
        if n in (0, 1):
            return n
        return self.get_result(n-1) + self.get_result(n-2)
    # provided: memoized_get_result = memoized(get_result)

f = Fibonacci()
f.get_result(10)

The definition of __get__ lets f.get_result(*args) be equal to f.memoized_get_result.__call__(f.memoized_get_result, *args) and makes it possible to decorate instance methods.